Article 11115

Title of the article

BAND STRUCTURES OF CARBON AND SILICON 2D SUPRACRYSTALS 

Authors

Brazhe Rudol'f Aleksandrovich, Doctor of physical and mathematical sciences, professor, head of sub-department of physics, Ulyanovsk State Technical University (32 Severny Venetz street, Ulyanovsk, Russia), brazhe@ulstu.ru
Meftakhutdinov Ruslan Maksutovich, Candidate of physical and mathematical sciences, associate professor, sub-department of physics, Ulyanovsk State Technical University (32 Severny Venetz street, Ulyanovsk, Russia), mrm@ulstu.ru
Fatkhutdinova Kamila Khasanovna, Student, Ulyanovsk State Technical University (32 Severny Venetz street, Ulyanovsk, Russia), brazhe@ulstu.ru

Index UDK

538.915

Abstract

Background. Unique properties of graphene, in particular its exceptionally high electrical and thermal conductivity, lead some researchers to the conclusion that the carbon electronics is taking the place of the classical silicon electronics. The purpose of this paper is to compare electronic properties of different carbon and silicon sp2-nanoallotropes whether to confirm or refute this conclusion.
Materials and methods. Supracrystalline carbon and silicon sp2-nanoallotropes of the types (X)44, (X)63(12) and (X)664 are studied in the work. The calculations were carried out both by tight-binding approximation (the TB method) and by the density functional theory formalism (the DFT method) using the VASP package.
Results. It is shown that for both carbon and silicon the (X)44 and (X)63(12) structures are semimetals, and the (X)664 structure is a narrow-band semiconductor.
Conclusions. The carbon sp2-nanoallotropes really seem to be more promising materials for nanoelectronics than the analogous silicon nanoallotropes. Similar two-dimensional carbon and silicon nanoallotropes can be useful for nanoelectronics, nanophotonics, and nanooptoelectronics.

Key words

carbon, silicon, nanostructures, sp2-nanoallotropes, numerical calculations, TB method, DFT method, band structure.

Download PDF
References

1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang T., Dubonos S. V., Grigorieva I. V., Firsov A. A. Science. 2004, vol. 306, pp. 666–669.
2. Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K. PNAS. 2005, vol. 102, pp. 10451–10453.
3. Wallace P. R. Phys. Rev. 1947, vol. 71, pp. 622–634.
4. Lomer W. M. Proc. R. Soc. Lond. A. 1955, vol. 227, pp. 330–349.
5. Charlier J.-C., Michenaud J.-P., Gonze X., Vigreron J.-P. Phys. Rev. B. 1991, vol. 44, pp. 13237–13249.
6. Saito R., Dresselhause G., Dresselhause M. S. Physical properties of carbon nanotubes. London,Imperial,1998.
7. Saito R., Kataura H. Carbon Nanotubes – Topics Appl. Phys. 2001, vol. 80, pp. 213–247.
8. Dubois S. M.-M., Zanolli Z., Declerk X., Charlier J.-C. Eur. Phys. J. B. 2009, vol. 72, pp. 1–24.
9. Hohenberg P., Kohn W. Phys. Rev. 1964, vol. 136, pp. B864–B871.
10. Kohn W., Sham L. J. Phys. Rev. 1965, vol. 140, pp. A1133–A1138.
11. Gonze X., Beuken J.-M., Caracas R., Deutraux F., Fuchs M., Rignanese G.-M., Sindic L., Verstraete M., Zerah G., Jollet F., Torrent M., Roy A., Mikami M., Ghosez Ph., Raty J.-Y., Allan D. C. Comp. Mat. Sci. 2002, vol. 25, pp. 478–492.
12. Soler J. M., Artacho E., Gale J., Garcia D. A., Junguera J., Ordejon O., Sanchez-Portal D. J. Phys.: Condens. Matter. 2002, vol. 14, pp. 2745–2779.
13. Crespi V. H., Benedict L. X., Cohen M. L., Louie S. G. Phys. Rev. B. 1996, vol. 53, pp. R13303–R13305.
14. Deza M., Fowler P. W., Shtorgin M., Vietze K. J. Chem. Inf. Comput. Sci. 2000, vol. 40, pp. 1325–1332.
15. Terrones H., Terrones M., Hernandes E., Grobert N., Charller J.-C., Ajayan P. M. Phys. Rev. Lett. 2000,vol.84, pp. 1716–1719.
16. Baughman R. H., Eckhardt H., Kertesz M. J. Chem. Phys. 1987, vol. 87, pp. 6687–6700.
17. Narita N., Nagai S., Suzuki S., Nakao K. Phys. Rev. B. 1998, vol. 58, pp. 11009–11014.
18. Haley M. M., Brand S. C., Pak J. J. Angew. Chem. Int. Ed. Engl. 1997, vol. 36, pp. 836–838.
19. Bucknum M. J., Castro E. A. Solid State Sci. 2008, vol. 10, pp. 1245–1251.
20. Brazhe R. A., Karenin A. A. Matematicheskoe modelirovanie fizicheskikh, ekonomicheskikh, tekhnicheskikh, sotsial'nykh sistem i protsessov: tr. 7-y Mezhdunar. konf. (2–5 fevralya 2009 g.) [Mathematical modeling of physical, economic, technical, social systems and processes: proceedings of 7th International conference (2–5 February 2009)]. Ulyanovsk, 2009, p. 51.
21. Karenin A. A. J. Phys.: Conf. Ser. 2012, vol. 345, p. 012025.
22. Brazhe R. A., Karenin A. A., Kochaev A. I., Meftakhutdinov R. M. Fizika tverdogo tela [Solid state physics]. 2011, vol. 53, no. 7, pp. 1406–1408.
23. Brazhe R. A., Kochaev A. I., Meftakhutdinov R. M. Fizika tverdogo tela [Solid state physics]. 2011, vol. 53, no. 8, pp. 1614–1617.
24. Brazhe R. A., Kochaev A. I. Fizika tverdogo tela [Solid state physics]. 2012, vol. 54, no. 8, pp. 1512–1514.
25. Kim B. G., Choi H. J. Phys. Rev. B. 2012, vol. 86, pp. 115435–115439.
26. Liu Zh., Yu G., Yao H., Liu L., Jiang L., Zheng Y. New J. Phys. 2012, vol. 14, p. 113007.
27. Enyashin A. N., Ivanovskii A. L. Phys. Status Sol. (b). 2011, vol. 248, no. 8, pp. 1879–1883.
28. Kresse G., Furthmüller J. Phys. Rev. B. 1996, vol. 54, pp. 11169–11186.
29. Goodwin L. J. J. Phys.: Condens. Matter. 1991, vol. 3, pp. 3869–3878.
30. Gillespie B. A., Zhou X. W., Murdik D. A., Wadley H. N. G., Drautz R., Pettifor D. G. Phys. Rev. B. 2007,vol.75, pp. 155207–155217.

 

Дата создания: 07.07.2015 10:26
Дата обновления: 10.07.2015 08:27